Artemisia annua, also known as sweet wormwood, sweet annie, sweet sagewort, annual mugwort or annual wormwood, is a common type of wormwood native to temperate Asia, but naturalized in many countries including scattered parts of North America. Flora of China Vol. 19, 20 and 21 Page 523 Sweet Annie, sweet sagewort, armoise annuelle Artemisia annua Linnaeus, Sp. Pl. 2: 847. 1753. Flora of China Vol. 20–21 Page 691 黄花蒿 huang hua hao Artemisia annua Linnaeus, Sp. Pl. 2: 847. 1753 Flora of Pakistan Altervista Flora Italiana, Assenzio annuale Artemisia annua L.
The chemical compound artemisinin, which is isolated from A. annua, is a medication used to treat malaria due to Plasmodium falciparum, the deadliest species of malarial parasite. Discovery of artemisinin and its antimalarial properties made the Chinese scientist Tu Youyou recipient of the 2011 Lasker Prize and 2015 Nobel Prize in Physiology or Medicine.
Seed germination | 4–10 |
Appearance of 1st pair of leaves | 15–30 |
Appearance of 2nd pair of leaves | 21–50 |
Branching | 60–90 |
Cessation of growth in height | 170–200 |
Flowering | 190–240 |
Full fruition | 230–280 |
Withering | 260–310 |
In terms of the climate A. annua prefers sunny and warm conditions. Its optimal growth temperature lies between 20 and 25 °C. Annual temperature sums of 3500–5000 °C (sum of temperatures higher than 10 °C over one year) are required to guarantee a proper maturing. The rainfall during the growing season should not be less than 600 mm (annual rainfall higher than 1150 mm). Especially the seedlings of A. annua. are susceptible to drought or water logging. The mature plants on the other hand are quite resistant to those climate conditions. Nevertheless, the preferred soil conditions for A. annua are light soils with deep topsoils and good drainage properties. But it is reported, that the plant is adaptable to different soil types. Paired with the relatively low demand on the environment A. annua can have characteristics of a neophytic plant.
A. annua is best sown in rows to facilitate the removal of weeds, which has to be done mechanically or manually because are typically not used. It is recommended to sow 1.4 – 2 seeds per square meter. The fertilizer requirements are at a low level. Potassium should be used as base fertilizer. It is taken up by the plant during the whole growing season. Nitrogen is required during early branching stages, an amount of approximately 70 kg N/ha is sufficient for the plant. Phosphate on the other hand is required during the blooming stages. Phosphate fertilization can lead to a higher artemisinin content in the leaves. The application of salicylic acid to the leaves shortly before harvesting the plant also can raise its artemisinin content. Besides few viral diseases, A. annua has no major diseases that need to be controlled.
The harvest of the plant is best done when plants reach peak artemisinin, which may be in the state of flower budding, for early-flowering cultivars. However, for late flowering cultivars that were reported to reach peak artemisinin in early September in the United States, the harvest will happen about a month before the flowering stage when plants produce more artemisinin in leaves. This peak artemisinin in early September was observed for Brazilian, Chinese, and Swiss clones in West Virginia. Drying the plants before extraction will significantly increase artemisinin as dihydroartemisinic acid and artemisinic acid seem to be converted into artemisinin. The whole plant is harvested and cut into branches which are dried in the sun or an oven. Some report that drying artemisia plants at 45 °C for 24h increased artemisinin and maintained leaf antioxidant capacity. The dry branches are shaken or beaten to separate the leaves from the stem. The leaves are then packed into fabric bags and shipped for further processing. The optimum storage conditions are either 20 °C with 85% relative humidity (RH) or 30 °C with 30–40% RH.
The first isolation of artemisinin from the herb occurred from a military project known as Project 523, following the study of traditional medicine pharmacopoeias performed by Tu Youyou and other researchers within the project. A. annua contains diverse , including such as , , , and which have unknown biological properties in vivo. Other phytochemicals include 38 . Dihydroartemisinin is the active metabolite of artemisinin, and artesunate is a water-soluble derivative of artemisinin. Recent research conducted in China and Korea has also demonstrated the presence of several limonene, present in the essential oil.
Artemisinin is a sesquiterpene lactone with an endoperoxide bridge and has been produced as an antimalarial drug. The efficacy of tea, made with either water or urine and A. annua, for the treatment of malaria is dubious, and is discouraged by the World Health Organization (WHO). Research has found that artemisinin is not soluble in water and the concentrations in these infusions are considered insufficient to treat malaria. A 2012 review stated that artemisinin-based remedies are the most effective drugs for the treatment of malaria. A 2013 review suggested that although A. annua may not cause hepatotoxicity, haematotoxicity, or hyperlipidemia, it should be used cautiously during pregnancy owing to a potential risk of embryotoxicity at a high dose.
The WHO has approved riamet (Coartem), a combination of lumefantrine (120 mg) and artemether (an artemisinin derivative extracted with ether, 20 mg) in repeat treatments over two days, producing efficacy of up to 98% against malaria.
Artemisinin and other phytochemicals
Malaria treatment
Mechanism
Artemisinin resistance
Traditional medicine
External links
target="_blank" rel="nofollow"> Distribution of artemisinin in Artemisia annua
|
|